831 research outputs found

    Optimal tuning of a GCM using modern and glacial constraints

    Get PDF

    Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate

    Get PDF
    The Laurentide ice sheet, which covered Canada during glacial periods, had a major influence on atmospheric circulation and surface climate, but its role in climate during the early Holocene (9–7 ka), when it was thinner and confined around Hudson Bay, is unclear. It has been suggested that the demise of the ice sheet played a role in the 8.2 ka event (an abrupt 1–3 °C Northern Hemisphere cooling lasting ~ 160 years) through the influence of changing topography on atmospheric circulation. To test this hypothesis, and to investigate the broader implications of changing ice sheet topography for climate, we analyse a set of equilibrium climate simulations with ice sheet topographies taken at 500 year intervals from 9.5 to 8.0 ka. Between 9.5 and 8.0 ka, our simulations show a 2 °C cooling south of Iceland and a 1 °C warming between 40° and 50°N in the North Atlantic. These surface temperature changes are associated with a weakening of the subtropical and subpolar gyres caused by a decreasing wind stress curl over the mid-North Atlantic as the ice sheet lowers. The climate response is strongest during the period of peak ice volume change (9.5–8.5 ka), but becomes negligible after 8.5 ka. The climatic effects of the Laurentide ice sheet lowering during the Holocene are restricted to the North Atlantic sector. Thus, topographic forcing is unlikely to have played a major role in the 8.2 ka event and had only a small effect on Holocene climate change compared to the effects of changes in greenhouse gases, insolation and ice sheet meltwater

    Impact of meltwater on high-latitude early Last Interglacial climate

    Get PDF
    Recent data compilations of the early Last Interglacial period have indicated a bipolar temperature response at 130 ka, with colder-than-present temperatures in the North Atlantic and warmer-than-present temperatures in the Southern Ocean and over Antarctica. However, climate model simulations of this period have been unable to reproduce this response, when only orbital and greenhouse gas forcings are considered in a climate model framework. Using a full-complexity general circulation model we perform climate model simulations representative of 130 ka conditions which include a magnitude of freshwater forcing derived from data at this time. We show that this meltwater from the remnant Northern Hemisphere ice sheets during the glacial-interglacial transition produces a modelled climate response similar to the observed colder-than-present temperatures in the North Atlantic at 130 ka and also results in warmer-than-present temperatures in the Southern Ocean via the bipolar seesaw mechanism. Further simulations in which the West Antarctic Ice Sheet is also removed lead to warming in East Antarctica and the Southern Ocean but do not appreciably improve the model-data comparison. This integrated model-data approach provides evidence that Northern Hemisphere freshwater forcing is an important player in the evolution of early Last Interglacial climate.This work was carried out with funding from the UK-NERC consortium iGlass (NE/I009906/1) and is also a contribution to the European Union’s Seventh Framework programme (FP7/2007–2013) under grant agreement 243908, “Past4Future. Climate change – Learning from the past climate”. This is Past4Future contribution no. 85

    The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease

    Get PDF
    Although iron-mediated oxidative stress has been proposed as a potential pathomechanism in Parkinson's disease, the global distribution of iron accumulation in Parkinson's disease has not yet been elucidated. This study used a new magnetic resonance imaging contrast, quantitative susceptibility mapping, and state-of-the-art methods to map for the first time the whole-brain landscape of magnetostatic alterations as a surrogate for iron level changes in n = 25 patients with idiopathic Parkinson's disease versus n = 50 matched controls. In addition to whole-brain analysis, a regional study including sub-segmentation of the substantia nigra into dorsal and ventral regions and qualitative assessment of susceptibility maps in single subjects were also performed. The most remarkable basal ganglia effect was an apparent magnetic susceptibility increase-consistent with iron deposition-in the dorsal substantia nigra, though an effect was also observed in ventral regions. Increased bulk susceptibility, additionally, was detected in rostral pontine areas and in a cortical pattern tightly concordant with known Parkinson's disease distributions of α-synuclein pathology. In contrast, the normally iron-rich cerebellar dentate nucleus returned a susceptibility reduction suggesting decreased iron content. These results are in agreement with previous post-mortem studies in which iron content was evaluated in specific regions of interest; however, extensive neocortical and cerebellar changes constitute a far more complex pattern of iron dysregulation than was anticipated. Such findings also stand in stark contrast to the lack of statistically significant group change using conventional magnetic resonance imaging methods namely voxel-based morphometry, cortical thickness analysis, subcortical volumetry and tract-based diffusion tensor analysis; confirming the potential of whole-brain quantitative susceptibility mapping as an in vivo biomarker in Parkinson's disease

    Millennial‐scale climate oscillations triggered by deglacial meltwater discharge in last glacial maximum simulations

    Get PDF
    Our limited understanding of millennial-scale variability in the context of the last glacial period can be explained by the lack of a reliable modeling framework to study abrupt climate changes under realistic glacial backgrounds. In this article, we describe a new set of long-run Last Glacial Maximum experiments where such climate shifts were triggered by different snapshots of ice-sheet meltwater derived from the early stages of the last deglaciation. Depending on the location and the magnitude of the forcing, we observe three distinct dynamical regimes and highlight a subtle window of opportunity where the climate can sustain oscillations between cold and warm modes. We identify the Eurasian Arctic and Nordic Seas regions as being most sensitive to meltwater discharge in the context of switching to a cold mode, compared to freshwater fluxes from the Laurentide ice sheets. These cold climates follow a consistent pattern in temperature, sea ice, and convection, and are largely independent from freshwater release as a result of effective AMOC collapse. Warm modes, on the other hand, show more complexity in their response to the regional pattern of the meltwater input, and within them, we observe significant differences linked to the reorganization of deep water formation sites and the subpolar gyre. Broadly, the main characteristics of the oscillations, obtained under full-glacial conditions with ice-sheet reconstruction derived meltwater patterns, share similar characteristics with δ18O records of the last glacial period, although our experiment design prevents detailed conclusions from being drawn on whether these represent actual Dansgaard-Oeschger events

    Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era

    Get PDF
    The widespread appearance of megaphyll leaves, with their branched veins and planate form, did not occur until the close of the Devonian period at about 360 Myr ago. This happened about 40 Myr after simple leafless vascular plants first colonized the land in the Late Silurian/Early Devonian, but the reason for the slow emergence of this common feature of present-day plants is presently unresolved. Here we show, in a series of quantitative analyses using fossil leaf characters and biophysical principles, that the delay was causally linked with a 90% drop in atmospheric pCO2 during the Late Palaeozoic era. In contrast to simulations for a typical Early Devonian land plant, possessing few stomata on leafless stems, those for a planate leaf with the same stomatal characteristics indicate that it would have suffered lethal overheating, because of greater interception of solar energy and low transpiration. When planate leaves first appeared in the Late Devonian and subsequently diversified in the Carboniferous period, they possessed substantially higher stomatal densities. This observation is consistent with the effects of the pCO2 on stomatal development and suggests that the evolution of planate leaves could only have occurred after an increase in stomatal density, allowing higher transpiration rates that were sufficient to maintain cool and viable leaf temperatures

    Transient climate simulations of the deglaciation 21–9 thousand years before present; PMIP4 Core experiment design and boundary conditions

    Get PDF
    The last deglaciation, which marked the transition between the last glacial and present interglacial periods, was punctuated by a series of rapid (centennial and decadal) climate changes. Numerical climate models are useful for investigating mechanisms that underpin the events, especially now that some of the complex models can be run for multiple millennia. We have set up a Paleoclimate Modelling Intercomparison Project (PMIP) working group to coordinate efforts to run transient simulations of the last deglaciation, and to facilitate the dissemination of expertise between modellers and those engaged with reconstructing the climate of the last 21 thousand years. Here, we present the design of a coordinated Core simulation over the period 21–9 thousand years before present (ka) with time varying orbital forcing, greenhouse gases, ice sheets, and other geographical changes. A choice of two ice sheet reconstructions is given, but no ice sheet or iceberg meltwater should be prescribed in the Core simulation. Additional focussed simulations will also be coordinated on an ad-hoc basis by the working group, for example to investigate the effect of ice sheet and iceberg meltwater, and the uncertainty in other forcings. Some of these focussed simulations will focus on shorter durations around specific events to allow the more computationally expensive models to take part
    corecore